Interactive figures using JupyterLite
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
The Lorenz equations can arise in simplified models for lasers, dynamos, thermosyphons, brushless DC motors, electric circuits, chemical reactions and forward osmosis. A visualization of (1) can be seen using ipywidgets
running in JupyterLite
.
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
Figure 2:Using the matplotlib hexbin plotting algorithm with various colormaps.
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
Using the matplotlib hexbin plotting algorithm with various colormaps.
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations:
Using the matplotlib hexbin plotting algorithm with various colormaps.
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, developed a simplified mathematical model for atmospheric convection. The model is a system of three ordinary differential equations now known as the Lorenz equations: