Lorenz Attractor
Using ipywidgets and matplotlib directly in your browser
# This is only needed for JupyterLite
%pip install ipywidgets
import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interactive
from IPython.display import display
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def solve_lorenz(
N=10, angle=0.0, max_time=4.0,
sigma=10.0, beta=8./3, rho=28.0):
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], projection='3d')
ax.axis('off')
# prepare the axes limits
ax.set_xlim((-25, 25))
ax.set_ylim((-35, 35))
ax.set_zlim((5, 55))
def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho):
"""Compute the time-derivative of a Lorenz system."""
x, y, z = x_y_z
return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]
# Choose random starting points, uniformly distributed from -15 to 15
np.random.seed(1)
x0 = -15 + 30 * np.random.random((N, 3))
# Solve for the trajectories
t = np.linspace(0, max_time, int(250*max_time))
x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)
for x0i in x0])
# choose a different color for each trajectory
colors = plt.cm.viridis(np.linspace(0, 1, N))
for i in range(N):
x, y, z = x_t[i,:,:].T
lines = ax.plot(x, y, z, '-', c=colors[i])
plt.setp(lines, linewidth=2)
ax.view_init(30, angle)
plt.show()
return t, x_t
w = interactive(solve_lorenz, angle=(0.,360.), max_time=(0.1, 4.0), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))
display(w)
Loading...